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OBJECT 

To study the parameters that influence the elertrical initiation of con- 
ductive mixtures containing secondary explosives. 

SUMMARY 

An examination of some of the parameters which affect the electrical 
initiation of a conductive explosive mixture has been made. The conductive 
mixture was RDX/aluminum 80/20. Some parameters were arbitrarily ht-ld 
constant, since the effort was concentrated on parameters which were cor- 
sidered most critical in the initiation. The effects of energy, voltage, and 
power were studied. The tests show that, for a given condition, power is an 
important factor. Also that, for a given energy, there is a critical voltage 
and capacitance for effective energy transfer. Secondly, the results show 
that the diameter and column length of the conducting layer are related to 
the probability of fire for a given applied energy and loading pressure, and 
that a mathematical expression of this relationship, when plotted, gives a 
normal sensitivity curve. Finally, 0.50 joule was found sufficient to initiate 
a conductive RDX/aluminum 80/20 mixture. 



INTRODUCTION 

Conductive explosive mixtures are used widely in this country in primers, 
detonators, and initiating devices (Ref 1). These mixtures contain primary 
explosives of low energy. Recently, secondary explosives have been used 
to arrive at a safe in-line detonator (Refs 2 and 3)- Many such compositions 
are used in end items for various purposes. Hence, an understanding of the 
behavior of these compositions in response to different stimuli is essential. 
Although we had previously developed several conductive explosive mix- 
tures for service use, we had not studied the parameters involved in the 
electrical initiation of such mixtures. 

It has been suggested, and confirmed by actual tests, that the mass, 
length of column, diameter of column, loading pressure, particle si^e, 
.amount of conductor, type of conductor, density, and resistance are of im- 
portance in the initiation of conductive explosive mixtures (Refs 4, 5, and 
*•). Also, there is some indication that the electrical energy is not the 
only factor involved in the initiation of these compositions (Ref 7). An 
earlier study of a conductive (RDX/aluminum) mixture has indicated that 
column length, mass, and density are interrelated (Ref 8). Thus it was 
pustulated that there is some critical length or mass from which it is prob- 
able that a self-sustaining reaction can be obtained by using a given input 
electrical  *nergy (Ref 5). Investigators in this country and in England have 
further pos ulated that, for a given electrical energy discharged from a 
capacitor,   here is a critical voltage above or below which the probability 
of initiation becomes less if the energy is the same (Refs 5 and 9)- 

These two hypotheses have been investiga.'ed and the experimental re- 
sults indicate that they have some validity. 

DISCUSSION 

In previous studies of the initiation of explosives and explosive compo- 
sitions, energy has always been the main concern. In studying the elect'ical 
initiation of secondary explosives, investigators have found that the addi- 
tion of conductive material, such as graphite, metals, and metal oxides, 
reduces the energy required for initiation. 

The conductive mixtures used in this study were RDX and aluminum in a 
ratio of approximately 4 parts ROX to 1 part aluminum. The two mixtures 
used, which were designated ER41-14 and ER41-29, contained 20.56% and 
17.45% aluminum, respectively. 



The results of the series of experiments using conductive mixture 
ER41-14 are given in Table 1 (p  8).   The data in Table 1 shows that, as 
the input electrical energy from a capacitance discharge circuit is in- 
creased, the probability of firing is also increased. The energy varied 
from 0.12 to 8.00 joules. Some of the energy levels were obtained from sev- 
eral different combinations of voltage and capacitance. The percentage 
firing at the 1.25 joules/1600 volts level was of interest because a 100% 
firing probability was obtained. 

Table 2 (p 9) gives similar results for 5000 volts and 1600 volts. The 
data in Table 2 shows that, when the energy is increased, the probability 
of firing also increases. However, 1600 volts (1.28 joules) gave the same 
frequency of firings as 5000 volts (>6 joules). 

The data in Table 3 (p   9) shows the relationship of probability of firing 
to voltage with 0.32 joule input energy. It should be noted that 3500 volts 
gave the highest probability of firing and further that 100% firing was not 
attainable with 0.32 joule at 5000 volts. 

In Table 1, where the energy level of 1.28 joules is considered over its 
voltage range, 1400 to 1850 volts represents the critical voltage range. 
This data lends some credence to the hypothesis that, for a givci electri- 
cal energy, there is a critical combination of voltage and capacitance which 
gives maximum probability of firing. Any other combination will give re- 
duced firing probability. Table 1 shows that, for 100% firing at 1.28 joules, 
the critical voltage is 1600 t 250 volts and the critical capacitance 1.00 1 
0.25 microfarad. 

The percentage of the calculated stored energy that is delivered to the 
explosive composition (column 1, Table I) is not known. However, in the 
case of 1.28 joules, the reaction of the conductive explosive composition 
varies. It seems reasonable to assume that the quantity of delivered energy 
is constant under the test conditions. The only other logical explanation 
for the difference is that power input is a significant factor. Thus, for a 
given calculated energy, there is a critical voltage and RC time for effec- 
tive initiation. 

In the second series of experiments, the ER41-29 RDX/A1 conductive 
mixture was used. In this series, the mass and the diameter, both of which 
have effects on the column length, were varied. The input energy was held 
constant at 0.5 joule and the loading pressure at 10,000 psi. Because the 



loading pressure was constant, it was assumed that the density would be 
constant in this series. Tlie density can, however, be calculated for each 
point since all the required measurements are available. 

Some of the results reported in the literature on conductive explosive 
mixtures (Refs 3 and 6) indicate that both mass and resistance are impor- 
tant in electrical initiation. 

In this series of tests, the following diameters were used: 0,10 inch, 
0.196 inch, and 0.25 inch. The mass was varied from 25 milligram- co 200 
milligrams. Table 4 (p 10) gives the probability of firing with 0.5 joule in 
0. lO-inch-diameter sleeves for the different masses or sample sizes. It 
should be noted that the column lengths, as measured, are also given. Sim- 
ilar results for 0.196-incli- and 0.250-inch-diameter sleeves are given in 
Tables 5 and 6 (pp II and 12), respectively. When column 5 is plotted 
against column 7 for Tables 4, 5, and o, three distinct curves are obtained, 
as Figure 2 (p 14) shows. One can immediately conclude that the energy- 
to-mass ratio is not the predominant controlling factor. If it were. Figure 2 
would show only a single curve. It appears that some other properties ap- 
parently related to the length and diameter of the column are of considerable 
importance. These curves are similar to other curves from sensitivity data 
plots; they are S-shaped. The data also shows that there are critical masses 
for each of the diameters for 0% and for 100^ f ring. Also, there is a cor- 
responding critical column length, for 0% and 100% firing, for a given energy 
and loading pressure. 

If a relationship among the mass, column length, and diameter exists, 
this relationship should result in a single curve for all the data. At the 
outset of our attempt to correlate the data, let us assume that the probability 
of firing, % F(x), is some function of the mass (m) and the resistance (R) 
of the conductive explosive mixture for a given input energy and loading 
pressure, 

%F(x)«F(m,R) (1) 

Figure 2 shows that, as one would intuitively expect, % F(x) varies as 1/m. 
Suppose, also, that % F(x) would vary as 1/R. Let X = % F(x) and the rel- 
ative ''mportance of mass (m) and resistance (R) be designated by the ex- 
ponents a and b. 

x = k (i) (i) (2) 



Since 

prrD'L    a   . n oL    4L 
m = pv ^ f , and R   =  , 

4 A     nÜ* 

by substituting one gets 

v '■ i. ■, i /^r <3) 

Combining the constant factors into one constant 

*- (^)a(r)b 

Since the exponents a anil b represent the relative importance to be as- 

signed each term, suppose one assumes a     3 and b     1 

then 

For simplicity, X vs — was plotted (i.e., the same weight for both D and 

L) for all the data in Tables 4, 5, and 6, (pp 10,  11, and 12), and columns 

3 and 7 of Figure 3 (p 15). Now, assume that a     2 and b      1 

\C4L7   \ L / D'L1 

Plot X vs  r— for all the data in columns 4 and 7 of Figure 4 (p 16). 
DL  4 

These graphs show a grouping which gives the typical S-shape sensitivity 

curves. Figure 3 does not show as good a correlation of diameter and 

column length with probability of I.re as does Figure 4. Thus, Kquation 6 

better describes the relative imro   ance of the parameters. 

*p - density, v     volumr   D     di.. .iC       L     length, A     area, a     resistivity, n     constant. 



EXPERIMENTAL PROCEDURE 

The materials used were: 

RDX (specification grade), HOL-SR4-57 

Aluminum powder, atomized, Type C, Class D (14.^ microns) 

Weighed amounts of the RDX and aluminum were blended for 4 hours in a 

V-type blender. The composition was then analyzed by washing out the 

RDX with acetone and weighing the residue to a constant weight. 

Weighed amounts of conductive mixtures ER41-14 and ER41-29 were 

loaded at 10,000 psi into plastic sleeves having a 0.125-inch wall thick- 

ness and diameters of 0.100 inch, 0.196 inch, and 0.250 inch. The press 

used was a Denison Midget one-ton type. 

The column lengths were measured by using a pair of brass electrodes 

and a micrometer. 

The firing tests were conducted according to Picatinny Arsenal SOP-ER- 

20 (April 1959) for Firirg Explosive Devices (high and low voltages). The 

main features of the test firing assembly are shown in Figure 1 (p 13). The 

electrodes are held firmly against the column of conductive RDX/Al by the 

spring in the head ot the fixture. The firing energy is applied through the 
electrodes into the conductive RDX/Al. A detonation was recorded when 

the plastic sleeve was ruptured. Ten tests were conducted for each con- 

dition studied. 
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TABLE 1 

Rvlotionthip of tntrgy input to porcont firod 

for conductive RDX aluminum (80 20) mixturo* 

En»'9y. jowUi Capacity, pf Valtaga Pareant Firad 

0.12 0.01 5000 10 
0.12 0.10 1600 0 
0.32 0.025 5000 40 
0.306 0.05 3500 60 
0.312 0.10 2500 30 
0.32 0.25 1600 30 
0.32 1.00 800 20 
0.61 0.10 3500 60 
0.64 0.50 1600 60 
1.23 0.10 )000 JO 
1.28 0.50 2240 SO 
1.28 0.75 1840 100 
1.28 1.00 1600 100 
1.28 1.25 1400 100 
1.28 2.00 1150 60 
1.28 3.00 820 70 
1.53 0.25 3500 70 
2.00 4.00 1000 40 
3.12 0.25 5000 70 
5.12 4.00 1600 100 
6.25 0.50 5000 100 
8.00 4.00 2000 100 

,ER41-14,  '00 mg/10,000 psi/0.25 inch diamct« 



TABLE 2 

R*lotion«hip of «nvrgy and vultag« to percent fired 
for conductive RDX/aluminum (80/20) mixture* 

Energy, joules Capacity, ^f VolfOB« Parc«nt Flrad 

0.12 0.01 5000 10 

0.32 0.025 5000 40 

1.23 0.10 5000 30 

3.12 0.25 5000 70 

6.25 0.50 5000 100 

0.12 0.10 1600 0 

0.32 0.25 1600 }0 

0.64 0.50 1600 a 

1.28 1.00 1600 100 

5.12 4.00 1600 100 

•ER41-14,  100 mg/10,000 psi/0.25 inch diameter. 

TABLE 3 

Relationship of voltage to percent fired 

for RDX/aluminum (80/20) mixture at 0.32 joule 

Energy,  jeulcs Capacity, ftf Voltag« Paicant 

0.32 1.00 800 20 

0.32 0.25 1600 30 

0.312 0.10 2500 JO 

0.306 0.05 3500 60 

0.32 0.025 5000 40 



TABLE 4 

Rvlotienthip of p*rc«irt fired to weight and column length 
for conductive RDX/aluminum (80/20) mivtur« in 
0.10-inch-diameter plastic »leeve at 0.50 joule* 

Column 
W.ight, 

mg 
Length, 

imp 1/DL 
»/ 

1/DL 3 1000/m 
Density, 

g/ec 
Percent 

Fired 

25 3.164 3.164 1.778 40.00 1.559 100 

27 3.333 3.00 1.65 37.03 1.599 100 
30 3.538 2.82 1.50 33.33 1.673 100 
32 3.398 2.94 1.60 31.25 1.858 100 

33 3.6525 2737 1.576 30.30 1.783 100 
34 3.8666 2.586 1.312 29.41 1. 736 100 

35 4.540 2.20 1.03 28.57 1.522 60 
36 4.190 2.386 1.16 27.77 1.696 70 
IH 4.520 2.21 1.04 26.31 1.659 60 

AO 4.870 2.07 0.942 25.00 1.638 50 
42 5.930 1.69 0.693 23.80 1.398 40 
44 5.13 1.949 0.869 22.72 1.69: 20 
4^ 4.919 2.03 0.919 22.22 1.805 60 
48 5.707 1.752 0.735 20.83 1.659 20 
5U 5.880 1.700 0.704 20.00 1.678 0 
.'5 9.330 1.07 0.351 13.33 1.586 0 

100 12.79 0.78 0.223 10.00 1.543 0 

•ER41-29 loaded at lO.OOOpsi. 

10 



TABLE 5 

Relationship of percent firod to weight and column length 
for conductive RDX aluminum (80/20) mixture in 
0.196-inch-diameter plastic sleeve at 0.50 joule* 

Column 
Weigh», Length, 

mg mm 1/OL 
»/ 

1000/m 
Density, 

g/ee 
Percent 

Fired 
60 2.057 2.481 1.732 16.66 1.502 100 
65 2.146 2.377 1.628 15.38 1.559 100 
68 2.240 2.278 1.5209 14.70 1.563 100 
-o 2.316 2.203 1.430 14.28 1.556 80 
"5 7.480 2.057 1.4322 13.33 1.557 ^0 
76 2.457 2.076 1.331 13.16 1.593 100 
"'S 2.571 1.984 1.240 12.82 1.562 90 
80 2.570 1.985 1.240 12.50 1.602 20 
85 2.731 1.868 1.132 11.76 1.603 50 
90 2.837 1.798 1.070 an 1.633 20 

100 3.28 1.555 0.8591 10.00 1.570 0 
125 3.91 1.305 0.6627 8.064 1.646 Ü 

•ER41-29 loaded at 10,000 psi. 

11 



TABLE 6 

Relationship of percent fired to weight and column length 
for conductive RDX/aluminum (80/20) mixture in 

0.250-inch-diameter plastic sleeve at 0.50 joules* 

Column 
Weight, 

mg 
Length, 

mm 1/DL 
»/ 

1/DL  ' 1000/m 
Density, 

g/cc 
Percent 
Fired 

80 1.6258 2.460 1.9379 12.50 1.554 100 
90 1.800 2.222 1.6583 11.11 1.   79 100 

100 2.040 1.960 1.508 10.00 1.548 90 
100 2.07 1.934 1.344 10.00 1.526 90 
100 2.05 1.949 1. 3634 10.CO 1.540 90 
no 2.239 1.786 1.199 9.09 1.551 HU 

120 2.431 1.6545 1.0616 8.333 1.599 "il 

125 2.47 1.6207 1.032 8.00 1.598 40 
130 2.462 1.6246 1.042 7.692 1.669 40 
140 2.70 1.4814 0.9033 7.142 1.637 10 
150 2.96 1.3513 0.7862 6.666 1.595 0 
150 3.00 1.333 0.-710 6.666 1.579 0 
200 3.89 1.005 0.505 5.00 1.623 0 
200 3.87 1.034 0.52-7 5.00 1.632 0 

•EH41-29 loaded at  lO.OOOpsi. 

1-' 
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